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Abstract. We investigate the pole "re of the zeta function r~~ (s) = A i s  built out of 
the eigenvalues AI of a Bessel o p t o r  A, subject m Dirichlet boundary conditions at one end 
of the domain. This leads us to the study of CA, on the negative real axis. where most of the 
singulariries occur. 

1. Introduction 

The aim of this work is to provide some mathematical insight into the nature of the pole 
structure attached to the zeta function for the Bessel operator on the negative real axis, 
under specific boundary conditions. Generally speaking, the reasons why this object is of 
general interest are well known: for a huge category of physically motivated problem, the 
Hamiltonian is interwoven with the operator of the Bessel equation; e.g. classical vibrating 
strings and drumheads, heat conduction in cylinders, normal modes in resonant cavities, 
Fraunhofer diffraction through circular apertures, quantum free particles in cylindrical or 
spherical domains under special boundary conditions, and the Casimir effect for perfectly 
conducting shells with the same type of symmetry [I]. 

As for quantum particles, the two-dimensional case has been further complicated in two 
different ways: altering the shape of the boundary (quantum billiards [2, 31) and threading 
the domain with a magnetic flux line (Aharonov-Bohm quantum billiards [3 ,  41). The 
extension of the latter to spherical domains has been considered by the authors in [5].  A 
consequence of these studies is the need to know the zeros (j"") of the Bessel function J, 
for arbitrary real v .  The method put forward in 13, 41, and further developed in [5 ] ,  is based 
on their numerical evaluation from the zeta function 

In particular, one takes advantage of the properties already noticed by Euler [6], which lead 
to 

Once j,, has been found, we can delete the corresponding term from 5"(2k) and apply the 
same procedure to the resulting sum, thus obtaining jvz, etc. 
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After studying cy in some detail, it was shown that its values at positive even integers 
satisfy two recursive laws, namely the 'quadratic' law 

and the 'linear' law 
(-1)'2" 

Jl(uC+2) II 2 0. (1.4) 
1 

4n!(n + U + l)! I;=o ( n - k ) ! ( n - k + u ) !  

Either of these allows a quick calculation of the values of 5;(2n), the first of which are 
quoted in the appendix. Moreover, (1.3) and (1.4) have proven to be suitable for the 
calculation of j,, by means of programming with recursive procedures or functions. 

While most of those findings concern the values of <. for positive integers, little is 
known about this function on the negative part of the real axis. In this paper we shall 
deal with this portion of the domain. Apart from possible applications (e.g. along the lines 
suggested in [7]), the authors share the view that the mathematical content of this subject 
can be interesting enough by itself. 

Section 2 is a survey of the heat kernel series method. Its application to the Bessel 
operator in one dimension is described in section 3, where two different recursive laws for 
the coefficients are found. The residues of cV at negative odd integers and its finite values at ' 
non-positive integers are also calculated. In section 4, we provide an independent derivation 
of the same results by analytic continuation based on complex-plane integration techniques, 
without resorting to heat kernel formalism. A note on the extension of that method to the 
case of standard homogeneous boundary conditions is also given. Some final comments 
appear in section 5. 

2. Asymptotic expansion of the heat kernel 

The zeta function for an operator A, of positive eigenvalues [&], is defined to be 

If A has zero eigenvalues, they are omitted from this sum and dealt with separately when 
this is of interest. As a rule, (2.1) makes sense only for Res larger than some positive 
so. which is the rightmost real pole of the function in question. By means of the integral 
representation 

where Tre-'* = Et e-'L, ( ~ ( s )  can be analytically continued to other values of s. A way 
of doing so is to take advantage of the heat kernel expansion [SI 

which is asymptotic for small t (hence the - sign). D is the space dimension and C, are 
calculable coefficients independent of 2. The behaviour for large t is 

t + w  (2.4) T~ - e-:E 
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where E > 0 denotes the lowest eigenvalue. After splitting the integration domain into 
[O, 11 and [l,  CO) and substituting (2.3) in the first part of the integral, 

where by virtue of (2.4) f is analytic for any s. Let us look for possible poles, which can 
only be at points of the form s = ( D  - n)/2,  n = 0,1,2, . . . : 
(i) n < D 

There are poles of order one at s = f, y, . . . ,+  with residues 

(ii) n D 
D - n  

2 
(s = 0 is included here). Given that lim 1 - - (-l)"'m! is finite, <A has no 
singularity at these points. In fact, its value is 

S E - - -  - m m e N  (a) 

r ( w + m )  

( - l )"m! C D + ~ .  (2.7) 
1 

cA(-m) = - (4rr)D/2 
D - n  1 s = - = - (m+ z) m c N  

2 (b) 

All of them are potential poles of order one, with residues 

(2.8) 
Of course, they become true singularities wherever these residues are non-zero. 

We will focus this study on the Bessel operator in D = 1 
I d  d uZ 

A = A ,  E ---i-- +-  r d r  dr r2 
with eigenfunctions subject to the following boundary conditions: they must be regular at 
r = 0 and vanish at r = 1. These solutions are therefore of the form Jv(jvnr). where j, 
is the nth positive zero of J,. As a result, the eigenvalues of A, are given by j:n. Thus 

m 
< ~ . ( z )  = jk2 Rez > i. (2.10) 

n=l 

For convenience, we will rather handle the zeta function (1.1). i.e. e&) = cAV(s/2) .  The 
bound Res > 1 in its series definition comes from our howledge that the rightmost real 
pole is now at s / 2  = D / 2 ,  i.e. s ~ =  1 (or from considering the asymptotic growth of j,. 
and comparing with the Hurwitz zeta function). 

Particularly easy cases are v = &$, because 

2 sinz 
RZ cosz J*I/z(z) = [ 

and 
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Then 
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(2.11) 

c(s) and <(s, a)  being the Riemann and Hurwitz zeta functions. They have only one pole 
at s = 1 with unit residue. Therefore, the residues for the negative poles of must vanish 
at U = i4. The same should happen to its finite values at negative even integers, since 
~(-2m) = < (-2m, 4) = 0, m = I, 2 , .  . . . 

When considering <&), the negative poles are located at s = -(2m + 1). m E N .  
From (2.8) for D = 1, taking into account the argument rescaling from CA, to <. and using 
r(z)i-(l - Z) = n CSCRZ, we can put 

(2.12) 
(-l)m+l 

Res-(%+l) = Res[<,(s), s = -(Zm + 1)l = czn+z x 
where we have introduced the notation 

c =-CJ(?) 1 n+ 1 n E N .  
J;? (2.13) 

Concerning the finite values at non-positive even integers, they are easily read from 

t(-h) = 4(-1)"'c%+1 m = 0,1,2,  .. . . (2.14) 

As we have just shown, the c,'s encode the necessary information to describe the pole 

Cv(-2m) = CAu(-m) and (2.7), which for D = 1 give 

swucture. Our aim is to find exact expressions to determine them up to any arbitrary n. 

3. Coefficients of the heat kernel expansion for the Eessel operator 

First, we will apply Moss' method [91. Instead of the operator A, consider A + x z  for 
sufficiently large x:  

Making use of (2.3), taking advantage of Watson's lemma and integrating term by term-this 
time without splitting the domain-we get 

In particular, for D = 1, s = 1 -which is one of the cases not considered in that work- 
and using (2.13), this asymptotic equality turns into 

m 
{A+,Z(l) - ; c c " x - ( " + ' ) .  (3.3) 

"=O 

All this is valid for any operator A such that these expressions make mathematical sense. 
From now on, we specify them to the Bessel operator in the above-quoted conditions. We 
begin with the expression of J, as an infinite product ([lo], vol2. p 61) 

(3.4) 
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After the change z = ix, we get the modified Bessel functions Z&) = i-”J,(ix). Taking 
the logarithmic derivative of (3.4) and using the property 

a 
- - ( P Z ” ( X ) )  = x-”I”+1(x) (3.5) ax 

we arrive at 

The outcome so far is not new, in the sense that the above relation is essentially the same 
as equation (AS) in [4]. However, while in this reference the author employs methods 
involving continued fractions or, alternatively, power-series expansions, here we make use 
of asymptotic identities. 

Comparing (3.6) and (3.3), we obtain 

(3.7) 

This is our starting point. From this we will get two different recursions for the c,’s and 
thus calculate the residues. 

Lemma 1. The c,’s obey the ‘quadratic; recursive law 

CO = 1 
1 c1 = - (w + 5 )  

cz = cs = f (U’ - 4) 

(3.8) 
(3.9) 

(3.10) 

(3.1 1) 

Proof. Differentiating (3.7), and with the help of (3.5) and of & (x”+’ZY+l(x)) = x”+’Z,(x), 
we come to 

(3.12) 

Replacing again Z!,+~(x)/Zdx) with the right-hand side of (3.7), and after some index 
rearrangements, the ensuing relation reads 

(3.13) 
n=1 L IS 

Since it has~to hold for any possible x ,  the identity must be satisfied separately for each 
power of x .  The terms in xo yield c: = 1. Given that CO = Zu+l(x)/Zv(x), the plus 
sign must be chosen, i.e. we get (3.8) and, in consequence, CO = 1. 

As for the coefficients in x-”,  n > 1, we have (n - 2u - 2)c,-1 = cic+~, n 2 1. 
Solving recurrently from (3.8). we find (3.9), (3.10). Substituting the values of CO and c1. 
we write a more convenient form of the above recursion, namely (3.11). U 

The calculated values of c4, c5, . . . , have been listed in the appendix (formula (A.2)). 
co = 1 originates from the residue for the pole of [Js) at s = 1, which is always present. 
All the other c,’s vanish for w = +f from n = 2 on, and for w = -f from n = 1 on. This 
slight difference stems from the fact that, by virtue of (2.14), c1 is twice the finite value of 
the zeta function at s = 0; the Hurwitz zeta function vanishes at s = 0 when the second 
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argument equals f ,  while the Riemann zeta function does not vanish at s = C@ , as a result 
of which 
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c, (U = f )  = 251/2(0) = 2{(0) = -1 

C, (U = -4) = 25‘-1/2(0) = 23(o. ;) = 0. 

Apart from U = -1 (+;) for n > 1(2), there are other roots for particular c.’s, all of them 
real$, forming a somewhat more involved pattern. Since the c,’s are even polynomials in U, 
we have studied their zeros referred to the variable uz rather than U. Examination of table 1 
shows that the kth root takes on values which are ‘around’ $(2k + (k = 0 , 1 , 2 . .  .). 
However, while the one for k = 0 always shows up exactly as 4, and the one for k = 1 
seems to decrease monotonically to the value 3 for increasing n-it has not yet actually 
arrived at this value when already n = l b f o r  larger k’s there appears to be a damped 
oscillation about $(2k + 1)2, which, in the case of k = 2, coincides with 9 for n = 10 and 
n = 16, without remaining there for successive n’s. By (2.12), this fact entails thefiniteness 
of &/z(s) at s = -9 and s = -15 (in addition to s = -3, as signalled by the 9 for 
n = 4, k = I), while maintaining poles at a l l  the intervening negative integers. Moreover, 
we have algebraically computed further c,’s up to n = 22 (which we have refrained from 
listing in (A.2) any further). The pair of zeros u2 = 7 shows up again only at n = 22, 
telling us that <*5/2(s) is finite at s = -21 but has poles at the negative integers between 
this point and s = -15. Thus, we feel that we have grounds now to believe that this 
function will cease to be singular at all the negative integers of the form s = -(3 + 6m), 
m = 0 , 1 , 2  ,.... 

3.1. Linear recursion 

Lemma 2. The c,’s satisfy the ‘linear’ recursive rule 

-y(-l)JT cm = n = 0 , 1 , 2  ,.... 
m=O (n -m)! r (u - n + m  ++) 

ProoJ We recast (3.7) as 

n n! r ( u + n - m + + )  r ( u + n + $ )  

r (U -n+ $) 
(3.14) 

m 
I”+l(X) - I d x ) C c . x - ” .  (3.15) 

Given that the heat kernel expansion on the RHS is asymptotic for large x ,  it is sensible to 
employ a similar one for the modified Bessel functions, that is 

n=O 

with 

(3.16) 

(3.17) 

Substituting the series in both the LHS and the RHS of (3.15). 

(3.18) 1 2 [a.+* - &av “-,,,cm x-” - 6. 

t In fact, one has c(0) = -4. <(O. U )  = 1 - U  (see e.g. [lo]). 
$ Here. the Descartes theorem allows one to anticipate that all mots shnU be real. 

“=O m=O 
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Table 1. Squares of the zeros of c.. labeiled by k = 0. 1.2,. , . , for increasing n. f is p w m c  
for k = 0, at any n. At k = 1 we notice an appm$ from above to %. Fork 2 2 we observe 
'oscillations'. with decreasing amplitude, around t(2k + 1)2, coinciding with this exact figure 
on some occasions (seek = 2 for n = 10 and n = 16). (Columns k = 1 and k = 2 had to be 
listed ai bigher precision,) 

Values of v2 such that c.(u) = 0 

k 

n ~0 1 2 3 4 5 6 7 

B a 
2.58809621 25.911904 
2.36581874 10.8&(181 
2.28646215 7.690693 
2.26012898 6.613306 

2.25246126 9 
2.25052767 6.176709 
2.25010121 6.200318 
2.25001759 6.230507 
2,'25000280 6.244948 
2.25000041 6.249211 

2,25000006 4 
2.25000001 6.250045 

66.7728 
24.8766 
16.0951 
13.0229 
11.9241 
11.7512 

11.9816 
12.2175 
12.2891 
12.2765 

136.4024 
47.0498 
28.5022 242.3732 
21.7723 79.2460 

19.0794 4516863 392.2578 
18.5321 33.1919 123i3092 
19.3694 27.5242 68.4384 593.6290 
20.6196 25.5550 47.7159 181.0830 
. 

Values of 4(2k+ U2, k =  0.1.2. ... 
0.25 2.25 6.25 12.25 20.25 30.25 42.25 56.25 

The validity of any x requires av+l = Ci=oa, n-mc,. n 2 0, which, by (3.17), yields 
(3.14). 0 

By taking n = 0 in equation (3.14), the equality (3.8) follows immediately. For 
successive values of n we again obtain the identities (3.9). and (3.10). as well as those 
in (A.2). 

Although work with linear recursion is usually easier than with quadratic recursion, in 
the authors' view the simplicity of the coefficients in (3.11), as compared to those in (3.14), 
makes the quadratic rule actually more amenable to algebraic computation. 

3.2. Explicit values of the residues and of (&?I) 

Recalling the result for the only positive pole at s = 1 (2.12) and the coefficients (3.8), 
(3.9). (3.10), (A.Z), we find the precise form for the residues of the poles of 5". To illustrate 
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this, we write down those for the rightmost five poles: 
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2 16 
Res-5 = -- 

16n 
307 54703 

320 
d--U f- 

80 
Res-, = -- 

5121 45 ( 74 

. .  (3.19) 

Except for the first residue, all of them vanish when U = i, as expected. 
Next, we t u n  to the finite values of 5;(-2m). Equations (2.14) and (3.8). (3.9). (3.10), 

(A.2) give these quantities up to any desired m. As an example, we list the first five, which 
are 

. .  (3.20) 

By virtue of (2.11) we can now get back the known results for the Riemann and Hurwitz 
zeta functions ((0) = -$, < (0, 4) = 0, and ((-2n) = 5 (-2n, 1) = 0, n = 1.2, . . .,t 
after just setting U =if. This shows the 'explosive' nature o f t ' s ,  for U # +;-or other 
roots of the c,'s-as compared with the Riemann or Hurwitz F. Actually, not only can the 
former be non-zero where the latter vanish, but they also blow up at some points where the 
Riemann and H d i t z  functions are finite. Cases like U = +% are in a sense closer to these 
classical functions, as the good behaviour at some negative integers is recovered. 

The value of <.(O) in (3.20) was already conjectured in 141 (equation (A.17)). while in 
the present work it has been shown to be correct. 

i The vanishing of the Hunvitz function at these points follows from <(-m, x )  = -w, E,@) being the mth 
Bernoulli polynomial, and from the property &(I - x) = (-I)"'&(x), which, in turn, implies &+I (i) = 0. 
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4. Derivation by complex integration 

4.1. Alternative proof of lemma 1 

The zeta function (1.1) can be expressed as the complex-plane integral 

where C, is a sector-like contour between two arcs of circumference-of radii E and R- 
centred at the origin and two radial lines connecting them. To be more precise, E < It1 < R, 
0 e 6 e j , , ,  R 3 CO, and I arg(t)l < 0.0 < 8 < n/2. We will eventually take 0 = n/2. 
It is immediately seen that, inside this region, the equation JUG,) = 0 has only real 
solutions. Let e+(,) and be the upper and lower halves, respectively, of this contour. 
The behaviour of J, along C*(<) is given by 

Therefore 

Regarded as a function of z. the first integral is analytic for Rez > -1, and the second 
only for Rez > 1, which is where can be represented by the series (1.1). Thus we have 
<$(z) defined for Rez 1. Next, we do the sum (Jz) = @(z) + &)(z), performing 
the addition of the respective second terms, and integrating their result for 0 = 1112. The 
outcome is 

+!? [C ~+ (” + ;) 3 2 1  

7r 1 - z  (4.4) 

valid for Rez > 1. However, we now observe that the second term explicitly provides 
its own analytic continuation (it is actually a meromorphic function), while the first is, as 
already remarked, analytic for Rez > -1. We thus see that has a simple pole at z = 1 
with residue l/n. Moreover, it is also plain that (”(0) = -4 (U + i). 

Let us now consider the restriction of (4.4) to the ship - 1 < Rez < 0, keeping 0 = 7r 12 
fixed. The h i t  E + 0 yields the fundamental expression 

It has now to be continued-in the range of Rez-to the left of the real axis. Let 

~ ( p )  In [&or ,@)] .  (4.6) 

a.p-”, for p + CO, This function admits an asymptotic expansion of the form G(p) - 
which can be found term by term. On the other hand, it can be proved that G satisfies 

p2G” + p2G” + 2p2G’ + a - v z  = 0. (4.7) 
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After substituting the asymptotic series of G(p) in this differential equation, we obtain 
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al = 1. ( L  - U') 
2 4  

Deleting and adding to the G(p) in the integrand a term O(p - 1) akp-k (where 
O(p - 1) denotes the unit step function switching on at p = I), and performing the 
integration of the last piece, one comes to 

P 
+f sin (7) E&. 

k l  x (4.9) 

This holds, in principle, for -1 < Rez -= 0, but it gives an explicit analytic continuation 
to - p  - 1 i Rez -= 0, from which we find 

<,(-21) = -(-I)' 1 a2 

Res[<&), z = -(21+ 111 = -(21+ l)au+l 

l c N *  

1 E N .  (4.10) 

After comparing them with (2.12) and (2.141, we realize that (4.8) is identical, up to the 
notational change c, = -(n - l)an, to the quadratic recurrence (3.8H3.11). 

(-U1 
JI 

4.2. Extension to standard homogeneous boundary conditions 

We are taking the same operator A ,  as in (2.9) but defined now on functions @ regular 
at r = 0 and such that a @ ( l )  + b@'(l) = 0, where a, b E R and la[ + Ibl > 0, which 
ensures hermiticity. Furthermore, the requirement sign(a) = sign(b) will be enough to 
guarantee that A, is positive as well, and we shall therefore denote its eigenvalues by 12, 
with I E R+. The study of <A. can go through by using <~..(z) C,"=l[In(O, u3'1-', 
where cos0 J,(In(O, U)) +sin0 In(O, U) J;(Ia(O, U)) = 0, 0 < B < x .  This zeta function 
is now expressed as the complex-plane integral 

<o,y(z) = 2 dt In[cose Ju(t)  +sine t ~ : ( t ) ]  t - 2 - 1  (4.1 1 )  

where C, is the same circuit as in the previous subsection, and will be decomposed into the 
same pieces C+(,) and e+). 

We will consider 0 # 0 (the 0 = 0 case has already been studied). In order to ensure 
the positivity of A, and, thus, that there is no L on the imaginary axis, we assume this 
analysis is restricted to 0 -= 0 < x/2. It is easy to see that, along e*(<), 
cos0 J Y ( t )  + sin0 t J:(t) 
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Therefore, we put 

This holds for Rez > 1, but the first term gives an analytic function for Rez =- 1, and the 
second can be straightforwardly calculated: 

We thus obtain an analytic extension of (o,.(z) for Rez > 1, with a pole at z =-1 of residue 
I / X .  Also (0..(0) = -;(U - 8). Considering -1 < Rez <, 0, and taking E + 0+, we 
have 

valid for 0 < 0 < n/2. From (4.14), the function <.e,. can be continued step by step in the 
way already shown for the other case. Although the task of writing down some general 
recurrence-for specific values of <e,v--appears now to be much more involved, we feel the 
method should at least be useful for the (numerical or algebraic) computation of relations 
between special values of this function. 

5. Final remarks 

When solving the Helmholtz equation in dimensions higher than D = 1, the radial part 
still contains the Bessel operator, of course, but the eigenvalues are degenerated due to the 
different contributions of each angular mode. This occurrence of non-radial pieces makes 
the study of the corresponding zeta functions even more involved. Yet, we hope that the 
essential properties of these general objects can be related to the ones discussed here. 

As remarked in [ll], physical applications of zeta-function regularization often require 
explicit knowledge of the relevant ( A  function somewhere on the negative real axis. Several 
examples of this sort of calculation are shown in that pioneering paper, but they only include 
cases where the eigenvalues are- polynomial functions in the summation indices. For the 
zeros of the Bessel functions, this is no longer the case, and we feel that, in this mathematical 
sense, our work has gone one step further. 
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Appendix A. Explicit values of Cv(Zn) and of c, 

The expressions for (v(2n) which follow from either (1.3) or (1.4) are: 
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Z l u 3  + 181u2+513u+473 
211(u+1)6 (u+2)3 (u+3)2 (u+4) (~+5) (u+6)  

33u3 + 329uz + 1081~ + 1145 
'd4)= 212(u+ l )7(u+2)3(u+3)Z(u+4)(u+5)(u+6)(u+7)  

429u5 + 7 6 4 0 ~ ~  + 5 3 7 5 2 ~ ~  + 185430~~ + 311387~ + 202738 
216(u+1)8(u+2)4(u+3)2(u+4)2(u+5)(u+6)(u+7)(u+8) 
715u6 + 1 6 5 6 7 ~ ~  + 158568~~ + 798074~~ + 2217079~' + 3212847~ + 1893046 

217(u + 1)9(u + 2)4(u + 3)3(u + 4)'(u + 5)(u + 6)(u + 7)(u + 8) (u  + 9) 

t(16) = 

tw(18) = 

<.(20) = (2431v8+ 8 0 4 2 5 ~ ~  + 1152851~~ + 93156671~~ + 46240675~~ + 143917279? 
+273583653u2 4- 289891557~ + 130934438) 

219(u+ 1)10(u+2)5(u+3)3(u+4)2~u+5)2(u+6)(u+7)(u+8)(u+9)(u+ 10)' 

. .  (A.1) 
These expressions have also appeared, under a slightly different notation, in [4]. The first 
results were already present in classic works such as [6]. 

Next, we list the values of c,, coming from (3.8H3.11) (which are also obtainable from 
(3.14)): 
ch = 2-'(-4u2 + 25)(4~' - 1) 
~5 = 2-'(-4~'+ 13)(4~' - 1) 
cg = 2-"(16u4 - 456u'f 1073)(4u2 - 1) 
c7 = 2-5(4uz - 53u2+ l03)(4~' - 1) 
cs = 2-l5(-32Ou6 + 2 4 5 6 0 ~ ~  - 218812~~ + 375733)(4~* - 1) 
c9 = T9(-64u6 + 2160u4 - 15084~' + 23797)(4u2 - 1) 
c10 = 2 -"(448~~ - 6 9 3 2 8 ~ ~  + 1137428~' - 2215391)(4~' - 25)(4~' - 1) 
c11= 2-9(256~s - 1 7 5 3 6 ~ ~  -F 290016~~ - 1535656~' + 2180461)(4~~ - 1) 
C ~ Z  = 2-'* (-21504~" + 6263040~' - 269700224~~ + 3698495520~~ - 18010382628~' 

+24713030909) (4u' - 1) 
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c13 = 2-11 (- 256~”  + 3 1 0 4 0 ~ ~  - 994000~‘ + 11918092~~ -~54469646u2 

c14 = 2-25 (135168~’~ - 64542720~’~ + 4832337664~~ - 126122179840~~ 

c15 = 2 -13 (1024~’~  - 200448~’~ + 10994880~~ - 247330256”‘ 

+72763141) (4~’  - 1) 

+1368164250864u4 - 5951385479128~~ + 7780757249041) (4”’ - 1) 

+2484141552w4 - 10387464744~’ + 13342715521) (4uz - 1) 

-99257540690736~~ + 663063181817176~~ - 1052358696484885) 
C16 = 2 -3’ (-1757184~” + 1271322624~” - 145041664768~~ + 5847088874752~~ 

x ( 4 2  - 25)(4u2 - 1) 
~ 1 7  = 2-17 (-16384~“ + 4845568”” - 418833408~’~ + 15765227264~~ 

-290506574528~~ + 2613597023568~~ - 10302661991788~~ 
+12878188618117) (4”’ - 1) 

(-4.2) 
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